preparation of sln-containing thermoresponsive in-situ forming gel as a controlled nanoparticle delivery system and investigating its rheological, thermal and erosion behavior
Authors
abstract
abstractvarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (slns). due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. different strategies have been employed to overcome this problem. in this direction, the present study introduces erodible in-situ forming gel systems as potential vehicles for prolonged release of slns.slns were prepared by solidification of an oil-in-water microemulsion containing stearic acid, surfactants and co-surfactants. nanoparticles were then dispersed in a thermosensitive poloxamer 407 aqueous solution (sol) at 4°c and their effects on gel forming ability, sol-gel transition and rheological behavior of the system were investigated over 5-50°c.thermal behavior of the system was investigated by differential scanning calorimetry too. erosion rate of the gel in the presence and absence of sln was measured by gravimetric method. integrity of slns in the system was investigated by scanning electron microscopy (sem) and particle size analysis.sln showed particle size and zeta potential of 130 ± 1.39 nm and - 44 ± 2.1 mv respectively. particle size analysis and sem studies after gel erosion revealed presence of intact sln in the hydrogel. sln reduced erosion rate of poloxamer gel and increased its sol-gel transition temperature from 26 to 29°c. however, gelling kinetic did not change significantly after addition of sln. damping factor present results indicate potential of sol-gel systems for controlled nanoparticle delivery and show that sln affects properties of the system.
similar resources
Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
full textPreparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
full textPreparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
Various nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems as poten...
full textPreparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
full textpreparation and characterization of solid lipid nanoparticle (sln) - containing poloxamer gel
full text
preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of nile red-loaded solid lipid nanoparticles
preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of nile red-loaded solid lipid nanoparticles. nanoparticles (nps) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. to solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of pharmaceutical researchجلد ۱۴، شماره ۲، صفحات ۳۴۷-۳۵۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023